Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Year range
1.
Diagnostics ; 12(4):835, 2022.
Article in English | MDPI | ID: covidwho-1762690

ABSTRACT

SARS-CoV-2 virus infects organs other than the lung, such as mediastinal lymph nodes, spleen, and liver, but, to date, metabolic imaging studies obtained in short-term follow-ups of patients hospitalized with severe COVID-19 infection are rare. Our objective was to evaluate the usefulness of [18F]FDG-PET/CT in the short-term follow-up of patients admitted for COVID-19 pneumonia and to explore the association of the findings with clinical prognostic markers. The prospective study included 20 patients with COVID-19 pneumonia (November 2020–March 2021). Clinical and laboratory test findings were gathered at admission, 48–72 h post-admission, and 2–3 months post-discharge, when [18F]FDG-PET/CT and respiratory function tests were performed. Lung volumes, spirometry, lung diffusion capacity for carbon monoxide (DLCO), and respiratory muscle strength were measured. Volumetric [18F]FDG-PET/CT results were correlated with laboratory and respiratory parameters. Eleven [18F]FDG-PET/CT (55%) were positive, with hypermetabolic mediastinal lymphadenopathy in 90.9%. Mediastinal lesion's SUVpeak was correlated with white cells' count. Eleven (55%) patients had impaired respiratory function, including reduced DLCO (35%). SUVpeak was correlated with %predicted-DLCO. TLG was negatively correlated with %predicted-DLCO and TLC. In the short-term follow-up of patients hospitalized for COVID-19 pneumonia, [18F]FDG-PET/CT findings revealed significant detectable inflammation in lungs and mediastinal lymph nodes that correlated with pulmonary function impairment in more than half of the patients.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.08.21253121

ABSTRACT

Purposeto evaluate the association between anti-SARS-CoV-2 S IgM and IgG antibodies with viral RNA load in plasma, the frequency of antigenemia and with the risk of mortality in critically ill patients with COVID-19. Methodsanti-SARS-CoV-2 S antibodies levels, viral RNA load and antigenemia were profiled in plasma of 92 adult patients in the first 24 hours following ICU admission. The impact of these variables on 30-day mortality was assessed by using Kaplan-Meier curves and multivariate Cox regression analysis. Resultsnon survivors showed more frequently absence of anti-SARS-CoV-2 S IgG and IgM antibodies than survivors (26.3% vs 5.6% for IgM and 18.4% vs 5.6% for IgG), and a higher frequency of antigenemia (47.4% vs 22.2%) (p <0.05). Non survivors showed lower concentrations of anti-S IgG and IgM and higher viral RNA loads in plasma, which were associated to increased 30-day mortality and decreased survival mean time. [Adjusted HR (CI95%), p]: [S IgM (AUC [≥]60): 0.48 (0.24; 0.97), 0.040]; [S IgG (AUC [≥]237): 0.47 (0.23; 0.97), 0.042]; [Antigenemia (+): 2.45 (1.27; 4.71), 0.007]; [N1 viral load ([≥] 2.156 copies/mL): 2.21 (1.11; 4.39),0.024]; [N2 viral load ([≥] 3.035 copies/mL): 2.32 (1.16; 4.63), 0.017]. Frequency of antigenemia was >2.5-fold higher in patients with absence of antibodies. Levels of anti-SARS-CoV-2 S antibodies correlated inversely with viral RNA load. Conclusionabsence / insufficient levels of anti-SARS-CoV-2 S antibodies following ICU admission is associated to poor viral control, evidenced by increased viral RNA loads in plasma, higher frequency of antigenemia, and also to increased 30-day mortality. Take-home messageabsent or low levels of antibodies against the S protein of SARS-CoV- 2 at ICU admission is associated to an increased risk of mortality, higher frequency of antigenemia and higher viral RNA loads in plasma. Profiling anti-SARS-CoV-2 s antibodies at ICU admission could help to predict outcome and to better identify those patients potentially deserving replacement treatment with monoclonal or polyclonal antibodies.


Subject(s)
COVID-19
3.
Journal of Clinical Medicine ; 9(10):3136, 2020.
Article | MDPI | ID: covidwho-799791

ABSTRACT

It is unclear to which extent the higher mortality associated with hypertension in the coronavirus disease (COVID-19) is due to its increased prevalence among older patients or to specific mechanisms. Cross-sectional, observational, retrospective multicenter study, analyzing 12226 patients who required hospital admission in 150 Spanish centers included in the nationwide SEMI-COVID-19 Network. We compared the clinical characteristics of survivors versus non-survivors. The mean age of the study population was 67.5 ±16.1 years, 42.6% were women. Overall, 2630 (21.5%) subjects died. The most common comorbidity was hypertension (50.9%) followed by diabetes (19.1%), and atrial fibrillation (11.2%). Multivariate analysis showed that after adjusting for gender (males, OR: 1.5, p = 0.0001), age tertiles (second and third tertiles, OR: 2.0 and 4.7, p = 0.0001), and Charlson Comorbidity Index scores (second and third tertiles, OR: 4.7 and 8.1, p = 0.0001), hypertension was significantly predictive of all-cause mortality when this comorbidity was treated with angiotensin-converting enzyme inhibitors (ACEIs) (OR: 1.6, p = 0.002) or other than renin-angiotensin-aldosterone blockers (OR: 1.3, p = 0.001) or angiotensin II receptor blockers (ARBs) (OR: 1.2, p = 0.035). The preexisting condition of hypertension had an independent prognostic value for all-cause mortality in patients with COVID-19 who required hospitalization. ARBs showed a lower risk of lethality in hypertensive patients than other antihypertensive drugs.

4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.25.20154252

ABSTRACT

BackgroundSevere COVID-19 is characterized by clinical and biological manifestations typically observed in sepsis. SARS-CoV-2 RNA is commonly detected in nasopharyngeal swabs, however viral RNA can be found also in peripheral blood and other tissues. Whether systemic spreading of the virus or viral components plays a role in the pathogenesis of the sepsis-like disease observed in severe COVID-19 is currently unknown. MethodsWe determined the association of plasma SARS-CoV-2 RNA with the biological responses and the clinical severity of patients with COVID-19. 250 patients with confirmed COVID-19 infection were recruited (50 outpatients, 100 hospitalised ward patients, and 100 critically ill). The association between plasma SARS-CoV-2 RNA and laboratory parameters was evaluated using multivariate GLM with a gamma distribution. The association between plasma SARS-CoV-2 RNA and severity was evaluated using multivariate ordinal logistic regression analysis and Generalized Linear Model (GLM) analysis with a binomial distribution. ResultsThe presence of SARS-CoV-2-RNA viremia was independently associated with a number of features consistently identified in sepsis: 1) high levels of cytokines (including CXCL10, CCL-2, IL-10, IL-1ra, IL-15, and G-CSF); 2) higher levels of ferritin and LDH; 3) low lymphocyte and monocyte counts 4) and low platelet counts. In hospitalised patients, the presence of SARS-CoV-2-RNA viremia was independently associated with critical illness: (adjusted OR= 8.30 [CI95%=4.21 - 16.34], p < 0.001). CXCL10 was the most accurate identifier of SARS-CoV-2-RNA viremia in plasma (area under the curve (AUC), [CI95%], p) = 0.85 [0.80 - 0.89), <0.001]), suggesting its potential role as a surrogate biomarker of viremia. The cytokine IL-15 most accurately differentiated clinical ward patients from ICU patients (AUC: 0.82 [0.76 - 0.88], <0.001). Conclusionssystemic dissemination of genomic material of SARS-CoV-2 is associated with a sepsis-like biological response and critical illness in patients with COVID-19. RNA viremia could represent an important link between SARS-CoV-2 infection, host response dysfunction and the transition from moderate illness to severe, sepsis-like COVID-19 disease.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL